

Auteur : Jean NOEL

Diffusion : Tous

Date : Juillet 2016

# Présentation du logiciel BOOST pour des simulations instationnaires

# et des calculs Monte-Carlo



# 1. Introduction

## 1.1. Présentation de BOOST

BOOST (« **BO**iler **O**ptimization and **S**imulation **T**ool ») est un environnement de simulation des systèmes, destiné à l'origine aux chaudières, d'émetteurs de chaleur et de régulateurs, et maintenant adapté aux systèmes CVC (HVAC).

Ces systèmes peuvent être « simples » comme le brûleur d'une chaudière, ou « complexes », c'est-à-dire résultant d'un assemblage de systèmes « simples ». Ainsi la modélisation d'une chaudière (système « complexe ») résulte d'un assemblage de systèmes « simples » pour l'alimentation gaz et l'évacuation des fumées, le brûleur, l'échangeur de chaleur, etc.

Les différents éléments représentant ces systèmes peuvent être développés indépendamment et implémentés sous la forme de DLL (« Dynamic Library Link »). La gestion des communications entre les différents éléments est transparente pour l'utilisateur.

# 1.2.Spécificités de BOOST

Le logiciel BOOST est une application gérant des documents comprenant à la fois des systèmes d'équations, un jeu de données et de résultats.

Il est organisé autour d'une interface **multi-documents** classique de l'environnement Windows, permettant de gérer un ou plusieurs documents à travers des « vues ».

L'utilisateur peut charger et gérer plusieurs documents simultanément. Ces documents, appelés « modules », sont associés à des fichiers possédant l'extension « boo ».

#### 1.3. Un document ou « module »

Un document ou « module » possède :

- Les sources (« programmes ») de l'implémentation du système d'équations.
- Les DLL des modules, ainsi que les connexions entre modules.
- Le dernier jeu de données et de résultats.

Chaque document peut lui même contenir d'autres documents, sans autre limitation que la mémoire de l'ordinateur : cette fonctionnalité permet de construire des « méta-modules » constitués d'un assemblage de modules. Par contre, le module ne contient pas les librairies éventuellement utilisées.





#### 2. Les fonctionnalités de calcul dans le logiciel Boost

#### 2.1.La vue du schéma « blocs-connexions »

La manipulation des modules se fait selon un schéma « blocsconnexions », c'est-àdire que les systèmes d'équations sont intégrés dans des blocs et que les flux d'échanges entre blocs sont présents dans les connexions.



Assemblage de modules BOOST, schéma « blocs-connexions » Cas du modèle d'un système de récupération d'énergie fatale

Chaque module peut être un métamodule, c'est-à-dire un assemblage de blocs. L'arborescence des modules et métamodules est visualisée sous forme d'un « arbre » et ne possède pas de limitation du nombre de niveaux.

D'autre part, la conception des modules est faite de telle sorte que chaque module correspond bien à un « objet » compréhensible par un ressortissant.

Un méta-module, par l'assemblage de modules élémentaires, permet d'effectuer des simulations sur des configurations réelles (CESI, solaire collectif, PAC en relève de chaudière, etc.).



La liste des modèles disponibles est la suivante :

| Systèmes                                                | 5                   | Utilitaires ''Nor                    | mes''     | Utilitaires "Techniques" |                  |  |  |
|---------------------------------------------------------|---------------------|--------------------------------------|-----------|--------------------------|------------------|--|--|
| <b>Générateur</b><br><b>Eau Chaude</b><br>PAC+Chaudière | - →<br>†GUN<br>16v/ | Gestion<br>Matrices RT 2012          | M R T 165 | Conduite<br>déperditive  | TUB 12           |  |  |
| Ballon ECS                                              | BA L<br>16          | <b>Puisages</b><br>EN 13203, RT 2012 | MIT       | Mitigeur                 | MIT MIT          |  |  |
| Bâtiment                                                | <b>BAT 16</b> 00    | Production<br>Eaux Uses              | 100 H2    | Volume Tampon            | RES 167          |  |  |
| Capteur<br>Solaire à Eau                                | CSE 14              | <b>Météo</b><br>RT 2005, 2012        | MET 16    | Echangeur                | шон 15<br>5<br>5 |  |  |
| Centrale de<br>Traitement d'Air                         | CTA 15vi            |                                      |           |                          |                  |  |  |

# Liste des modèles en service dans BOOST (juillet 2016)

Liste des principaux métamodèles en service dans BOOST (juillet 2016)

| Sur-Couche ou            | 1 Spécifique | (Méta)modèles " | Normes''                  | Métamodèles "Systèmes" |                                 |  |
|--------------------------|--------------|-----------------|---------------------------|------------------------|---------------------------------|--|
| Sur-couche<br>Ballon ECS |              | SIM_EN16147     | EN<br>16147<br>16<br>V2 • | RENFAT-I               | RENFAT<br>Instantine<br>15 v1   |  |
| PINCH                    | PINCH 13     | Modèle PACDS    | PACDS<br>15<br>V1         | RENFAT-A               | RENFAT<br>Accumulation<br>15 vr |  |
|                          |              | ERP             | ERP<br>13                 |                        |                                 |  |



#### 2.2. La vue du code source

Une vue de BOOST permet la génération d'un programme pour un module. Les **programmes sont écrits en C**, et le logiciel fait appel à un compilateur pour la compilation.

Les différents éléments représentant les systèmes modélisés peuvent être développés indépendamment et implémentés sous la forme de DLL (« **Dynamic Link Library** »). La gestion des communications entre les différents éléments est transparente pour l'utilisateur.

```
70
         double TetaD = TetaR+DT;
         double Tm = (TetaD+TetaR)/2; // Température moyenne d'eau
71
72
         int i;
73
74
         <u>Qa</u> /= 3600;
75
         Qq /= 3600;
         Pcal *= 1000;
76
77
         PCI *= 1000;
         PCS *= 1000;
78
79
         // Composition des fumées sèches
80
81
         -{
         double x h20;
82
         Mix.MX_GET_SP_MOL(&Fum, iH2O, &x_h2O);
83
         Mix.MX GET SP MOL(&Fum, iCO2, &CO2s);
                                                       CO2s = CO2s/(1-x h20) *100;
84
85
```

Exemple de code source d'un module BOOST

#### 2.3. Les écrans de saisie

Les écrans de saisie s'inspirent d'**Excel**, avec une partie (« gauche ») pour la saisie de données d'entrée et une partie (« droite ») pour l'affichage des sorties de calcul. Les données d'entrée et de sortie peuvent être des valeurs simples de type « réel » ou « booléen », mais également des tableaux ou des « objets » de type « tableaux ».

| B A L<br>15                | B Données d'entrée et de sortie du module<br>A L MetaModule : RENFAT_I_15 V1<br>15 Module : ECS |                  |     |                          |                                                   |           |     |
|----------------------------|-------------------------------------------------------------------------------------------------|------------------|-----|--------------------------|---------------------------------------------------|-----------|-----|
| Code                       | Nom                                                                                             | Valeur           |     | Code                     | Nom                                               | Valeur    | -   |
|                            | Données de l Echangeur n° 1                                                                     |                  | =   |                          | Température                                       |           | -   |
| <ul> <li>EStat1</li> </ul> | Etat En ou Hors Service Ech. 1                                                                  | En Service       | _   | <ul> <li>AvgT</li> </ul> | Température moyenne du ballon [°C]                | 43.5      | 4   |
| EBRs1                      | Prise en compte Echangeur 1                                                                     | 001              |     |                          |                                                   |           | _ = |
| EInPos1                    | Position Entrée Echangeur 1                                                                     | Haut             | _   |                          | Profils verticaux                                 |           | a l |
| ERhoCp1                    | RhoCp du fluide Ech. 1 [MJ/m3.°C]                                                               | 4.185            |     | • PrfT                   | Profil de température dans le ballon [°C]         | Profil T  | Ļ   |
| EPSd1                      | Position Sonde Echangeur 1 [0,1]                                                                | 0.67             |     | PrfQ                     | Profil de débits entrants dans le ballon [m3/s]   | Profil Q  | Į.  |
| EPEc1                      | Position Echangeur 1 [0,1]                                                                      | 0.21             |     | PrfM                     | Profil de débits entrants dans les strates [m3/s] | Profil M  | 1   |
| EHau1                      | Hauteur Echangeur 1 [0,1]                                                                       | 0.4              |     | PrfD                     | Profil de debit entre strates [m3/s]              | Profil D  |     |
| ESrf1                      | Surface d'échange Ech. 1 [m²]                                                                   | 2.63             |     | <ul> <li>PrfE</li> </ul> | Profil d énergie entrant dans les strates [W]     | Profil E  | 1   |
| EDis1                      | Distance entre axes de 2 spires [m]                                                             | 0.0437           |     | PrfX                     | Utilisé en debug                                  | Profil X  | 1   |
| EDml1                      | Diamètre intérieur d'une spire [m]                                                              | 0.0297           |     | PrfY                     | Utilisé en debug                                  | Profil Y  | 1   |
| EDmO1                      | Diamètre extérieur d'une spire [m]                                                              | 0.0337           |     |                          |                                                   |           | 1   |
| ELam1                      | Conductivité spire Ech. 1 [W/m.K]                                                               | 4.92             |     |                          |                                                   |           |     |
| ETCs1                      | Temp. Consigne Echangeur 1 [°C]                                                                 | 1000             |     |                          |                                                   |           | 1   |
| ETDT1                      | Delta Temp. Consigne Ech. 1 [°C]                                                                | 1                |     |                          |                                                   |           | 1   |
| ETIn1                      | Température Entrée Ech. 1 [°C]                                                                  | 57.12            |     |                          |                                                   |           | 1   |
| EDeb1                      | Débit Entrant Echangeur 1 [l/mn]                                                                | 0                |     |                          |                                                   |           | 1   |
| Géométrie                  | Piquages Echangeurs (Résistanc                                                                  | 0<br>es / Sondes | 7 - |                          | tures / Puiss / Energies / Piguages / Echangeurs  | s √Résist | a   |



# 2.4.Le synopsis

Une vue « synopsis » permet la **représentation graphique** d'un module selon une présentation définie par l'utilisateur. L'affichage se fait à l'aide de primitives géométriques ou d'images. Il est possible d'afficher les données d'entrée-sortie et de les modifier.



# 2.5.Le tracé des résultats en fonction du temps

La figure suivante donne un exemple de tracé de courbes de résultats en fonction du temps.







Un écran spécifique permet de réaliser des traitements statistiques sur les résultats instationnaires (voir la figure suivante).



Exemple de tracés de statistiques à partir de résultats instationnaires

# 3. Les fonctionnalités « Monte-Carlo » dans le logiciel Boost

#### 3.1. Présentation pour le domaine de la métrologie

#### 3.1.1. Le mesurande et son estimation

En métrologie, la méthode de Monte-Carlo permet à la fois d'évaluer l'incertitude de mesure et d'estimer les coefficients de sensibilité.

Une mesure physique est un phénomène aléatoire, dans le sens où on ne connaît pas la valeur absolue de la grandeur mesurée. Un ensemble de valeurs possibles est obtenu si on répète la mesure pour cette grandeur, la notion de probabilité est donc associée à la grandeur à mesurer. Par conséquent, on ne peut faire qu'une estimation de cette grandeur, le résultat de mesure est une variable aléatoire à laquelle est associée une loi de probabilité.

Le terme '**mesurande**' s'applique à la grandeur que l'on veut mesurer. Le mesurande peut ne pas être directement mesuré, mais il dépend des autres grandeurs, soit de grandeurs provenant des autres mesures physiques, soit de paramètres importants obtenus autrement, etc.

On établi une relation mathématique, appelé **modèle de mesure** qui modélise le processus de mesure physique en reliant toutes les grandeurs intervenant dans cette mesure.



La grandeur à mesurer - le mesurande - est choisie comme sortie du modèle et est appelée la **grandeur de sortie**. Toutes les autres grandeurs intervenant dans le modèle sont des **grandeurs d'entrée** dont les propriétés doivent être prédéfinies afin d'estimer celles du mesurande.

Le modèle de mesure peut être représenté par :  $Y = f(X_1, X_2, ..., X_n)$ 

où Y est la sortie du modèle et  $X_1, X_2, ..., X_n$  sont les grandeurs d'entrée.

#### 3.1.2. Processus de calcul

La démarche générale pour estimer les propriétés statistiques de la grandeur de sortie est décrite sur le schéma ci-contre.





#### 3.2. Exemples d'utilisation

Dans le logiciel BOOST, la vue « **Données** » permet de créer les variables de sortie et les variables aléatoires d'entrée, et la vue « **Source** » permet de définir le code du modèle en langage C. Ensuite, la vue « **Calculs Monte-Carlo** » permet de définir les données d'entrée et de visualiser les sorties ([MAB]).







Dans cette vue « Monte-Carlo », une distribution est associée à chacune des variables aléatoires d'entrée X<sub>i</sub>.

Cette vue « Monte-Carlo » permet également de choisir ou non le calcul des coefficients de sensibilité globaux (ce calcul est gourmand en temps) : coefficients totaux, globaux de premier et second ordre.

| Paramètres de la variable aléatoire |     |                    |                                                                      |         |  |  |
|-------------------------------------|-----|--------------------|----------------------------------------------------------------------|---------|--|--|
| Moyenne                             | 0   | Di                 | on                                                                   |         |  |  |
| Incertitude-type 1                  |     | Gauss              | Gauss                                                                |         |  |  |
|                                     |     |                    | Gauss<br>Rectangulaire<br>Triangulaire<br>ArcSinus<br>T-Distribution |         |  |  |
| Nom                                 | N N | l Trapez<br>Trapéz | ze-Curv<br>zoidal                                                    | /iligne |  |  |
| 다 Sortie Page 1                     | l   | Expon              | entielle                                                             |         |  |  |
| Somme                               | A   | Gamma<br>  Concta  | a<br>anto                                                            |         |  |  |
| ₽ Entree Page                       | 1   | Consu              | ance                                                                 |         |  |  |
| ☑● X1                               | A   | ddition            | X1                                                                   | Réel    |  |  |
| 🗆 🔴 X2                              |     | ddition            | X2                                                                   | Réel    |  |  |
| □● X3                               | A   | ddition            | X3                                                                   | Réel    |  |  |
| □● ×4                               | A   | ddition            | ×4                                                                   | Réel    |  |  |

Sélection des distrib. associées aux variables d'entrée

Toujours dans cette vue « Monte-Carlo », différentes fonctionnalités facilitent l'analyse des résultats.

*Choix de la variable* : après calcul, l'affichage des résultats se fait variable par variable, et la sélection se fait par la case à cocher située à gauche de la pastille de couleur et du nom de variable.

|    | Nom           | Module   | Code       | Туре |
|----|---------------|----------|------------|------|
| ₽- | Sortie Page 1 |          |            |      |
|    | Somme         | Addition | Y          | Réel |
| ₽- | Entree Page 1 |          |            |      |
|    | X1            | Addition | X1         | Réel |
|    | X2            | Addition | X2         | Réel |
|    | X3            | Addition | X3         | Réel |
|    | $\times 4$    | Addition | $\times 4$ | Réel |
|    |               |          |            |      |

Choix de la variable affichée

*Informations statistiques* : la fenêtre en haut à gauche affiche les propriétés statistiques de la variable cochée (moyenne, écart-type et les bornes supérieure et inférieure de l'intervalle de confiance dont la probabilité de couverture est 95%).

*Types de graphique* : certains résultats peuvent être visualisés par graphes, selon les cases cochées pour le type de graphique (voir figure cicontre).

| Statistiques       |        |  |  |  |
|--------------------|--------|--|--|--|
| Moyenne -0.0001043 |        |  |  |  |
| Ecart type         | 2      |  |  |  |
| Min 95             | -3.914 |  |  |  |
| Max 95             | 3.918  |  |  |  |
| Etendue 7.832      |        |  |  |  |

#### Statistiques affichées

| Type de graphique      | 🔲 Longueur intervalle 95%           |
|------------------------|-------------------------------------|
| Densité de probabilité | 🔲 Coeff. sensibilité totaux         |
| 🔲 Répartition          | 🔲 Coeff. sensibilité globaux 1er O. |
| Corrélation X1         | -                                   |
|                        |                                     |

#### Choix du type de graphique



| Le tableau | suivant  | présente | la  | liste des | types   | de a | graphiqu  | ues : |
|------------|----------|----------|-----|-----------|---------|------|-----------|-------|
| Le tuoreau | Sarrante | presence | 100 | mote des  | cj p co |      | 5 april q |       |

| Type de graphique                                      | Description                                                                                                                                                                                                                                | Affichage Ecran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Densité de probabilité<br>ou<br>Effectifs              | Tracé de la <b>densité de probabilité</b> ou<br>des <b>effectifs</b> (« nombre d'observations<br>appartenant à une classe spécifiée »<br>[GUM] C.2.17), sous forme<br>d'histogramme.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fonction<br>de<br>répartition                          | Tracé de la <b>fonction de répartition</b> ,<br>qui donne la probabilité que « la<br>variable aléatoire X soit inférieure ou<br>égale à $x \gg$ ([GUM] C.2.4), x étant<br>l'abscisse du tracé.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Longueur de<br>l'intervalle<br>de confiance            | Tracé de la longueur de <b>l'intervalle de confiance</b> bilatéral (voir plus loin).                                                                                                                                                       | Statutored and a statut |
| Coefficients<br>de<br>sensibilité<br>totaux et globaux | Tracé des <b>coefficients de sensibilité</b><br><b>totaux et globaux du 1<sup>er</sup> et 2eme</b><br><b>ordre</b> , sous forme de camembert.<br>Tracé en <b>pourcentages</b> ou en <b>valeurs</b><br>(alternance par un click à nouveau). | 55.72% 19.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Corrélation                                            | Présentation des résultats sous forme<br>d'un nuage de points, pour l'évaluation<br>d'une <b>corrélation</b> entre deux<br>variables.                                                                                                      | Correlation = 0.2722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Exemples d'affichages graphiques des résultats issus des calculs Monte-Carlo

L'intervalle de confiance bilatéral P (en %) est l'intervalle tel que la probabilité d'y obtenir une observation est de P ([GUM] C.2.27). Dans le cas présent, l'abscisse du tracé donne la valeur de P (comprise entre 0 et 5%) et l'ordonnée donne la longueur de l'intervalle de confiance bilatéral.



#### 4. La stratégie de modélisation/simulation du CETIAT

La stratégie de modélisation/simulation consiste à développer des « briques de bases » et de les tester de façon unitaire ou globale dans des programmes de tests dédiés, et de les intégrer dans une seule DLL appelable depuis le logiciel BOOST du CETIAT, ou par des outils commerciaux (Matlab, TRNSYS, LavView, outils Modelica) et depuis un ensemble de logiciels spécifiques à créer (SimBOOST), correspondant chacun par exemple à un métamodule d'EIG (CESCAI, CESCI, PAC2S, etc.).



Place de BOOST dans la stratégie de modélisation/simulation du CETIAT

Cette procédure permet de séparer les phases de mise au point des modèles des phases de simulation, et de pouvoir choisir l'environnement le plus adapté.